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Abstract— This paper investigates decentralized control for 

linear time-invariant systems with norm-bounded time-varying 

structured uncertainty. We derive LMI conditions ensuring 

robust stability. We also show how to incorporate performance 

robustness, where performance is measured by the H gain of 

the decentralized system. The potential of the proposed 

technique has been demonstrated by a simulation example of 

three coupled inverted pendulums. 

 

Index Terms—Decentralized control, LMI, norm-bounded 

uncertainty, robust stability.  

 

I. INTRODUCTION 

A large scale system is often decomposed into a set of 

inter-connected subsystems to enable control implementation. 

Thus, research on decentralized control has been attracted the 

attention of many researchers since the seventies. A sufficient 

condition [1] for connective stability in terms of bounds of 

uncertain inter-connections between subsystems was studied. 

This connective stability laid the foundation of decentralized 

control. In [2] and [9]-[10] considered LTI systems with 

time-varying but bounded parametric uncertainties with the 

assumption that the uncertainties are in the range space of 

input matrix (matching condition). In [3] and [8], the 

matching conditions of the system are not valid. Thus the 

authors decomposed the uncertainties into matched and 

mismatched parts. The matched portion can be dealt with by 

feedback control while the mismatched portion was 

constrained by norm conditions in terms of state signals. In [4], 

the system with time-varying, norm-bounded parametric 

uncertainties with no matching assumption were studied. 

Sufficient conditions for stability were established in terms of 

a scaled H control system and a robust H decentralized 

controller was designed accordingly.  

 

Note that decentralized control design is, in general, more 

difficult than that of centralized control. The difficult arises 

due to the fact that the controller for each subsystem is 

restricted to only using the local state or measurements in 

order to stabilize (with prescribed performance) the overall 

system. As in most control systems, a mathematical model 

usually cannot describe a dynamic system exactly. Also, a 

dynamical system is mostly working in a changing 

environment. This is especially true for large scale systems. 

 

The uncertainties considered in this paper consist of real 

time-varying norm-bounded structured uncertainties that are 

realized by a linear fraction representation (LFR) in state 

space framework. LFR has gained significant attention due to 

its structured representation in terms of matrices [5]. The LFR 
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consists of an LTI system, connected with a diagonal 

feedback element depending on the setting of uncertainties. 

No “matching condition” is imposed on the uncertainties 

because of the system representation. We present LMI-based 

system analysis and controller synthesis in which Lyapunov 

matrix inequalities in terms of constraints can be cast as a 

convex optimization problem [7], [8]. 

 

The paper’s outline is as follows. In Section 2, we 

introduce the notation used in the paper and describe the 

system to be analyzed and controlled. Also, we define the 

decentralized control problem considered in the paper, 

including the stability and performance robustness. The 

performance is measured by L2 gain. Section 3 is devoted to 

the analysis of the open loop system, based on the robustness 

requirement. The tools for analysis are Lyapunov stability 

theory and convex optimization techniques. In Section 4, we 

address the corresponding controller synthesis problems for 

static state-feedback. In Section 5, we illustrate our methods 

on three inverted pendulums control problems. 

 

II. PROBLEM FORMULATION 

A. Notation 

Throughout the paper the subscript “i” denotes ith 

subsystem. I denotes the identity matrix with its size 

determined from context. q
r
 denotes the rth element of the 

vector q and diag(A,B) is defined as 


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0

0
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We reserve the subscript “d” to express 

.    )( diag : ,,1
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iniid RAAA

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The subscript “D” is for 
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

    

B. Problem to Solve 

The purpose of this subsection is to define a framework on 

which our approach to decentralized control is based. 

Consider a class of linear time-invariant continuous-time 

systems  with norm-bounded time-varying structured 

uncertainty, composed of n subsystems i . 


n

i
iiii wpux

1

) , , ,(:


  

where x is the state of system  and is defined as  
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T
i

T Rxxxxx     ,1   

 

The subsystem i is defined as follows.  
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where xi denotes the state of subsystem i, xj is the state that 

acts on subsystem i from subsystem j, ui is the decentralized 

control input, signal wi is the external inputs which include 

any unknown disturbance to be rejected as well as the 

reference command to be tracked. zi, the controlled variable, 

may include tracking error or a cost of the input ui. Assuming 

that the system is full state-feedback, that is yi = xi. The 

matrices A, B, C, and D with all superscripts and subscripts 

shown in (1) are assumed to be real constant matrices with 

appropriate dimensions. If xj has no influence on xi, the 

associated system matrix Ai
j
 will be set to zero. Notice that pi 

and qi represent the output and input vectors of system 

perturbations while the pi
r
 and qi

r
 correspond to the rth 

element of pi and qi respectively. 
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i
r
(t) is the real valued unknown but bounded uncertainty and 

it is assumed to be a time-varying scalar quantity. Let 

  .)(   ,)(diag:
,,1, Rtδtδ r

inr
r
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qi
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 It is assumed that the uncertainty i,d belongs to a compact set 

 .   ,1:: ,, ididi B  

where the prefix B stands for “ball” or “bound”. Notice that 

the above-mentioned bounds applied in (1) can also be 

replaced by pi
T
 pi   qi

T
 qi. The state feedback closed-loop 

system of (1) is shown in Fig. 1 which mainly gives one the 

idea and meaning of how the system input, output, and 

uncertainty are represented. In Fig. 1 the labeled i represents 

the open-loop interconnection and contains all of the known 

elements including the nominal plant model, performance and 

the uncertainty weighting functions. The i,d block contains 

all the uncertain elements and is assumed to be within a 

compact set B which parametrizes all of the parametric 

uncertainty in the problem. There are four sets of inputs 

entering into i: perturbation output pi, disturbance wi, time 

varying state inputs from other subsystem xj and j i, and 

decentralized controls ui(t). Three sets of outputs are: 

perturbation input qi, controlled variable zi, system state xi, 

and state feedback gain Ki . 

The robustness specifications we address in this paper are 

that the L2 gain of input/output signals for each individual 

subsystem is less than a specific number i, which corresponds 

to the peak gain of the freq. response Gi(j), i.e. 
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Fig. 1 Closed-loop for subsystem i 

where ||Gi|| represents the H norm of transfer function 

matrix from disturbance wi to controlled variable zi. Thus, 

according to the system described in (3.1) and the required 

robustness properties the following robust decentralized 

control problem is addressed. 

Find a decentralized feedback controller ui(t) as a linear 

function of local state vector xi(t), i.e. ui(t) = Kixi(t) in which Ki 

is the feedback gain for subsystem i such that the resulting 

closed-loop system is robustly stable with respect to 

decentralized H disturbance attenuation for all admissible 

perturbations which lie in a compact set B. Sufficient 

conditions are 

(1)  Closed-loop system is asymptotic stable. 

(2)  ||Gi|| < i. 

 

III. SYSTEM ANALYSIS 

One of the powerful methods to analyze system stability is 

Lyapunov stability theory. Although there is no trivial method 

to establish a Lyapunov function, by experience, among 

Lyapunov functions that have been suggested and extensively 

used, the quadratic Lyapunov functions, i.e. V() = T
L, have 

been proved to be efficient and easily implemented [7]. 

Let’s consider an equivalent system of (1) 
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which is denoted by i. Therefore, we have the Theme 1. 

Theme 1 The overall system n
i ii x1 )(:    is robust 

decentralized stable with respect to H disturbance 

attenuation if there exists a symmetric matrix Ld such that the 

following matrix inequalities are satisfied 

Ld > 0,  d > 0,  d > 0,  and  

0
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Proof. See appendix A. 

Remarks:  

1) The last inequality in (3) is a quadratic inequality in matrix 

variable Ld can be further decomposed into LMI by Schur 

complement [7], [8] as shown in (4). 
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2) A dual condition of (4) can be established by a change of 
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. In fact, decentralized 

stability with performance requirement can be implied by 

the existence of Qd > 0 satisfying Nd > 0, Md > 0, and (5). 

3) The well-posed condition for (2) is incorporated in (4) or 

(5), since it implies 
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4) From Theme 1 and Remark 1) and 2), we see that a 

sufficient condition to determine system stability and 

performance can, in turn, be cast into convex optimization 

problem that is shown in [7], [8]. The problem can be 

easily formalized as an LMI feasible problem or can be cast 

into eigenvalue problem (EVP) as follows. 

Maximize    Trace Nd 

Subject to    Qd = Qd
T
 > 0, Nd > 0, Md > 0, and (5) with 

well-posed condition (6). 

 

IV. CONTROLLER SYNTHESIS  

Consider the subsystem i with static state-feedback 

controller ui(t) = Kixi(t). The decentralized closed-loop 

system can be written as  
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Thus, the overall closed-loop system may be written as 
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In the view of Theme 1 and its remarks, the sufficient 

condition for system (7) to have robust decentralized H 

disturbance attenuation is  

Qd > 0,  Md > 0 , Nd > 0,  and  
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Note that the last inequality in (9) is not convex since it jointly 

depends on Qd and KD. By the change of variables Y = KDQd , we 

obtain 
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(10) is LMI in matrix variables Qd, Y, Md, and Nd and thus can 

be cast into a convex optimization problem as follows. 
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Once the maximized solutions are found for the problem, then 

a stabilizing state feedback gain is obtained by 
1 dD YQK                                    (12) 

 

V. NUMERICAL EXAMPLES 

Consider the system in Fig. 2 consisting of three inverted 

pendulums of point masses mi, and length li. The pendulums 

interact via three springs and three dampers of stiffness kij and 

damping bij; i, j = 1,2,3, and ij. The distances from attached 

point of springs and dampers to the platform baseline are ai.  
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Fig. 2 Three Inverted Pendulums Systems 

In this example, we will demonstrate step response for the 

system using LMI-based decentralized control and show the 

flexibility of LMI-based approach. In order to achieve zero 

steady state error, i.e. e(t) = 0, an integral control will be 

added as an extra state for each subsystem. The system 

dynamics for pendulums are written in general form, 
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Multiplicative uncertainties are used as shown below,  

 

mi = mi(1+mimi), bij = bij(1+bijbij), kij = kij(1+kijkij)  

 

in which  with subscripts, as uncertainty weighting, is the 

percentage perturbation from nominal value of each 

parameter and  with subscripts varies from -1 to 1, i.e. -1   

 1. Plant data and weighting of uncertainties are shown in 

Table 1. Thus, the system can be written as (8). In this 

example, we let Dzu,D=0 to demonstrate a singular case in 

traditional H setup while the control saturation can still be 

enforced as constraints shown in [7]. A full state-feedback 

static gain can be obtained by computing feasible solution of 

(11).  If feasible solution does exist, then static gain can be 

obtained by (12). The simulation was done using Matlab with 

LMI Control Toolbox and static gain 
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where 0 represents the zero vector of appropriate dimension,  

Table 1 

 m1 m2 m3 b12 b13 b23 

nominal 1 1 1 1 .51 1 

weighting .14 .29 .19 1 1 1 

 k12 k13 k23 g=10 

nominal 1 .51 1 l1=1, l2=1.2, l3=1.1 

weighting 1 1 1 a1=a2=a3=0.5 

 

 2189.70267.80328.251 K ,

 5556.70355.104028.282 K , and 

 3352.74924.89417.253 K . 

We obtain the overall system poles at 

2215.09462.0 j , -7.6443, -1.0111, -8.6303, -0.7215, 

-7.3363, and j0.1099.-0.9470  

Notice that the uncertain data set in Table 1 can be used to 

form a data convex hull. The extreme points (or vertices) of 

the convex hull are taken from the corresponding  values, i.e. 

=1 and =-1. We assume the system uncertainties vary 

within this convex hull. It is obvious that the mass weighting 

in the Table 1 should not be equal to 1 to avoid the possibility 

that zero mass occurred in the denominator of (7). From the 

chosen data in the Table 1 we demonstrate the simulation 

results by varying the uncertainties from one vertex, which the 

stiffness and damping are twice of their nominal values, to 

another vertex, which the corresponding stiffness and 

damping are zero values. This can be done by switching  

from 1 to -1. The sudden humps at time 5 sec in Fig. 3 and Fig. 

4 show the results due to this change. Notice that it is an 

instantaneous switch. Next, we turn our attenuation to 

examine conservativeness of our design. This can be checked 

by expanding the vertex of convex hull to see how large it can 

be to cause instability while keeping the same control gain. To 

examine every vertex of the convex hull is tedious, thus we 

will only expand the vertices shown in the simulation as 

before to get idea of conservativeness. The simulation results 

show the weighting of stiffness and damping can be 

simultaneously increased to approximately 3 which shows the 

design is conservative. In fact, the results are not surprised 

because Lyapunov function provides only sufficient condition 

to stabilize a system, which in turn causes a conservative 

design. 

 

Fig. 3 Outputs of pendulums 
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Fig. 4 Control inputs  

APPENDIX 

To prove Theme 1, we will first introduce the following 

identity and define the notation that will be used in the proof. 
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Notations: 

The diag() and the usage of subscripts “d” and “D” have 

been defined in Section II. The following notations will be 

used throughout the paper. 
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Proof of Theme 1: 

We consider the quadratic Lyapunov function Vi(xi)= 

xi
T
Lixi. The consideration of performance and perturbation 

will be incorporated in the derivative of Lyapunov function 

for stabilization of overall system. We have 
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Substituting (2) into (14), applying the identity, and 

rearranging the expression, we obtain the inequality as 

follows, 

0

)()(

1

,1

321



























 


























































n

i
n

ijj
ii

Tj
ij

T
ii

Tj
ij

i

i

i
i

T

i

i

i

i

i
T

i
i

iT
i

xLAxxLAx

w

p

x

w

p

x

p

x

p

x
xx

,    (15) 
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By summing up (15), we obtain the inequality 
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A sufficient condition for the above inequality to hold 

requires Theme 1. This completes the proof. 
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